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Summary 

 There are often real-world scenarios where one will have to find a point’s inferred 

location relative to a set of points, and are only left with imperfect points correlating to the 

needed point group; this paper sets out to solve this problem. This question is frequent asked in 

relation to computer graphics as well as the science of metrology. In order to solve this 

problem, we must understand the different ways to represent a point’s relationship to a point 

cloud, in numeric, vector, and matrix form. Additionally it is important to know how to relate 

point clouds to one another and find the relationship so we can transform the given point. 

Finally, and with the most difficulty, we need to find this relationship for an imperfect and 

differing set of points. We do this through either the Kabsch Algorithm of the Iterative Closest 

Point Algorithm. 

Background Note: In order to properly understand this paper, the reader is expected to have a working 

knowledge of trigonometry, vector geometry, and linear algebra. While not necessary, a basic 

understanding of integral calculus would be helpful. No prior information on this specific topic is needed. 

 

Introduction  

This paper works to provide a solution for the problem of finding the location of a point 

in a ℝ3coordinate system relative to a different, imperfect ℝ3coordinate system. This solution 

involves defining terms for this solution, providing an understanding of point to point cloud 

relationships, exploring correlating point clouds, and finally finding a solution that will work 

with imperfect point groups. 

 

Background 

Many real-world situations deal with 3 dimensioned points in space. The inspiration for 

this research comes from the struggle to find point measurements relative to machinery using a 

Laser Tracker (a high-precision industrial measurement tool). This is difficult because the tool is 

only capable of measuring points relative to itself (it serves as the origin of the measurement 

and determines point location by spherical angles and a distance). In order to find these points 

relative to the machine, the “tracker’s” relative location to the machine must be determined. 

This math also is very useful in computer graphics. It can be used in photo editing software to 



match contours of graphics to one another, scale graphics, or transform the graphics on the 

screen. 

In order to understand these point transformations, it is important to establish how to 

define these points mathematically. For the purpose of this research we can assume that these 

points are being defined in ℝ3 (3 dimensional space). Basic math provides 3 common (fairly 

similar) ways to define points in ℝ3: 

• Numeric Coordinates: (x,y,z) or (r,θ,z) or (r.θ.ф) 

• Matrices: �� � 	
 or ���	� 

• Vector-Distances: <x,y,z> or {�̂ + ��̂ + 	��}. 

Each of these different systems comes with its own set of math rules and provides a different 

medium to consider the problems at hand. The simplicity of the numeric system is usually what 

is defaulted to for simple transformations; however, as will be demonstrated in the following 

content, much of this math can be conducted more readily with matrices and vectors. 

 

Section 1:  Data Points to Point Clouds 

It is important to determine an independent point’s relationship to the others. When 

given a point in ℝ3, the assumption is often made that the point is in regard to a given 

coordinate system with a known origin. However, if the coordinate system is not known, we 

must simply consider the point’s relationship to all other known points. While occasionally the 

independent point will fit nicely into the geometry of the other points, often it would provide 

geometry too difficult to work with to be worthwhile considering. This leaves only the option of 

considering the relative distances between the independent point and all other points. 

This can be done numerically. However, this is very difficult to do because there is no 

condensed way to describe these different relationships, so what is left is as many separate 

coordinate distances as there are points. It is also possible to consider the distance to the 

centroid of the point group, but that is a single distance relationship with no affiliated direction, 

and so could be anywhere on the surface of a sphere of possible locations around the 

independent point. 

With vectors, the relationship is found similarly to with points; however, the 

relationship to the centroid is far more precise because, in addition to distance, we can now 

show direction from the point. The total relationship can also be expressed with a resultant 

vector-distance combining all the provided vectors. Assuming a shared coordinate system, this 

is the best way to represent the relationship between an independent point and a point cloud, 

because it is a very simple, precise, and visual relationship. 



Matrices provide the most options of any of the systems. The distance relationships 

can be expressed as a set of vector distances represented by vertical column matrices. This in 

turn can be rewritten as a single matrix representing the set. The point cloud coordinates can 

be used to generate a basis that spans ℝ3, map the independent point onto the new basis and 

have a precise relationship regardless of true origin. 

We must also consider the number of points. Any of these methods should work 

regardless of the number of points given in the point cloud; however, if fewer than three points 

are used, the centroid of the cloud will provide a relationship to the independent point that 

resembles a ring normal to the distance between the points. This is because the independent 

point would have the same distances to the points no matter where on the ring it lays. With 

this in mind, it is safe to assume that using fewer than 3 points in a point cloud will lead to an 

imprecise relationship. With many points, the vector representation becomes far more difficult 

to find (the centroid relies upon a greater number of data points), and the numeric 

representation becomes almost impossible to find or demonstrate by hand. The matrix 

representation however, should remain almost identical since no matter the size of the point 

cloud, the basis should remain consistent, and the mapping will be equally easy. 

 

Section 2:  Correlating Point Clouds 

It is also important to find point cloud’s relationships to one another. A similar problem to 

what is presented in the first part of the research, relationships between point clouds can be 

thought of in two ways: 

• The sum of the relationships between all correlating points 

• The relationship of the point clouds as a mathematical entity. 

Correlating point clouds simply implies that the geometry of the point cloud is sustained 

while the positions differ. This can mean that every point in a cloud correlates with a point in 

the other, or that there are sufficient correlating points between the clouds that geometry can 

be inferred, and the points that don’t correlate are not defined in the opposing point cloud. 

It is often helpful to consider real world situations to remove some of the abstraction 

from the concept. Consider a car. While standing behind the car, one can see the back edge of 

the roof, the left and right rear tires, the exhaust, the rear bumper and the license plate. 

Standing to the left of the car however, one can see the front and rear left tires, the back and 

front edges of the roof, the doors, and the front and rear bumper. In this situation, these points 

are in totally different relative spaces from one another, but the rear tire, bumper, and roof 

correlate between the point groups. Understanding the relationship between the correlating 

point groups means that one can infer the location of ANY of the points (even the non-

correlating points) from either perspective, or another perspective entirely. 



The best way to find this kind of relationship is by considering a transformation of the 

point group (this can be a translation or a rotation). When the point cloud is moved along this 

transformation, the correlating points should match each other. That transformation can then 

be used to describe the relationship between the groups more precisely than a distance can. 

Additionally, a transformation can be checked by shifting an unused correlating point and 

checking the distance between its related point in the new point group. 

Numerically, this is once again a difficult concept since distance and direction cannot 

be described simultaneously. The way to find the relationship is either a highly abstract set of 

distances between correlating points, which doesn’t allow much way to find an inferred point 

relative to a different point cloud. The other option is once again relating the centroids of ONLY 

the correlating points. However, similarly to relating a single point, this is a very abstract 

distance and cannot provide a direction, leaving an unacceptably flawed solution. This all but 

eliminates a numeric solution as a possibility. 

Vector distance relationships are much closer, but still share some problems. When 

comparing centroids by vectors, a very accurate translational relation between the point groups 

can be generated; however it does not account for the rotational relation of the points (the 

centroids could line up, but the system needs to be rotated to match up). Likewise if individual 

correlating point relationships are found, every sequential transformation will undo whatever 

the last transformation accomplished, simply offering a series of transformations that do not 

relate to one another. The one other option for vectors alone is to consider the average 

transformation of all the distance vectors created between correlating points; this however, 

shares the same fatal flaw as the centroid transformation. 

Finally, Linear Algebra has a well-established and studied method of handling these 

relationships known as a “Transformation Matrix.” This is a concept and can be represented in 

several different ways, but the execution remains the same. When a vector representation of a 

point in subspace A is plugged into a transformation-matrix function from subspace A to 

subspace B, the output represents the position vector of that point in subspace B (the subspace 

from the second point cloud). This method allows for both translational and rotational 

relationships to be accounted for simultaneously. Finding the transformation matrix consists of 

finding the translational relationship and the rotational relationship between the different 

vector spaces and then plugging those into a set format of matrix. 

Three major types of transformation matrices exist in standard schools of thought, these 

are (‘A’ being the vector transformed): 

• Affine: � ���� ��� ������ ��� ������0 ���0 ���0     �������  , {A = !��	1#} {t stands for translation, r for rotation, 

and s for scale} 



• Linear: � ���	�,  {A = ���	�} 

• Perspective: $1 0 00 1 000 00 11    0000%, {A = !��	1#} 

• Rigid (Euclidean): � &��� ��� ������ ��� ������ ��� ���' + ���	�,  {A = ���	�} 

Among these, only the Rigid Transform and the Affine Transform fit the situation. The linear 

transform only translates points, while the perspective transform only changes the scale of 

points. The rigid transform and the affine transformation can clearly be used interchangeably, 

so for the remainder of the paper, I will simply refer to “transformation matrix” when 

discussing either.  

To utilize this relationship, we need to find the transformation matrix. The best method 

of doing this with directly relative points is to use diagonalization to find the eigenvalues and 

eigenvectors representing these point groups, and map between the eigenbases. While a very 

simple process in execution, this is a very abstract concept visually, and can be difficult to 

describe or picture. 

 

Section 3:  Imperfect Pairings 

 The next step is to figure out these relationships with imperfect groups. Up to this 

point, what has been discussed is ideal world situation. When all the “correlating” points have 

an exact match in the other point group. The challenge is when the points are not quite perfect. 

When the relationship between correlating points is not identical for each pair. This can 

commonly happen when relating real-world to conceptual world, and almost universally when 

comparing two sets of human-taken measurements. 

 Finding a transformation matrix gets much more difficult. The eigenvalue approach to 

finding a transformation matrix no longer works because with imperfect points the math will 

end up with a matrix that is not diagonalizable. Additionally, the mathematician must find some 

way to reduce these errors between points so the transformation leads to the smallest possible 

cumulative error. This added difficulty takes the problem from being a three step discovery to a 

many step difficult math problem. 

 Mathematicians today execute this process primarily with two algorithms, both are 

fairly recent discoveries. They are the: 

• Iterative Closest Point (ICP) Algorithm 

• Kabsch Algorithm. 



Each algorithm is a series of steps that allow for finding the optimal transformation matrix, and 

both utilize a “reference cloud” where the focus is translating one point cloud to another fixed 

“reference” (assuming the reference to be the “perfect” cloud).  

 The ICP Algorithm takes a point by point approach to finding the transformation 

matrix, stepping through the following: 

1. Find the closest point in final cloud to each point in the initial cloud 

2. Find root mean squared error of the entire system 

3. Estimate rotation and translation to decrease RMSE found above 

4. Transform entire initial cloud by rotation and translation 

5. Iterate steps 1-4 until RMSE cannot decrease 

6. Combine all transformations from iteration to find net transformation 

This is a long, brute-force process and can almost exclusively be done by computer processing 

hardware since there will often be hundreds of iterations before an optimal transformation is 

found. However, it can be done with any sets of points with any size error, and can leave the 

type of transformation matrix up to the user making it a useful tool. 

 The Kabsch Algorithm is a far more elegant solution to the problem. It follows the 

following steps once through and is complete: 

1. Find the centroids of the point clouds 

2. Find rotation 

a. Find the “Covariance Matrix” 

i. Translate both point groups to the origin by using their centroid 

ii. Multiply the initial set of points by the transpose of the final set 

b. Use “Singular Value Decomposition” to decompose the Covariance Matrix 

i. H (Covariance) = USVT  

c. Multiply the transpose of U by V in order to get a 3x3 rotation matrix 

i. R = UTV 

3. Find translation = t 

a. Multiply the new rotation matrix by the centroid of the initial point group and 

then add the centroid of the final to find the difference between the two after 

rotation. 

4. AR+t = New Rigid Transform 

This algorithm is very simple and straightforward, and works for all sizes of point groups. Due to 

the long nature of Singular Value Decomposition, it also is better done with computer code, 

however all the other steps can easily be done by hand. It also factors in the error reduction 

with the Singular Value Decomposition, so when you check the RMSE of the newly translated 

points, you should end up almost universally with as small of a value as the provided point 

groups will allow. 



 

Conclusion 

This is a very difficult math problem that can boil down to a very simple, elegant 

solution, or a far less elegant, but practical solution. From our understanding of point 

representation, points’ relationships to clouds, and clouds’ relationships to one another, we are 

able to extract a concise algorithm that is applicable not only to perfect pairings but also, with 

consideration, imperfect clouds. The simplicity of the ending solutions means that anyone with 

a basic knowledge of Linear Algebra and Calculus can do the math, and anyone with some 

programming knowledge can find a way to implement it.  


