
Optimal Transformations between Matching Point Groups

Noah Litov

6/16/16

Summary

 There are often real-world scenarios where one will have to find a point’s inferred

location relative to a set of points, and are only left with imperfect points correlating to the

needed point group; this paper sets out to solve this problem. This question is frequent asked in

relation to computer graphics as well as the science of metrology. In order to solve this

problem, we must understand the different ways to represent a point’s relationship to a point

cloud, in numeric, vector, and matrix form. Additionally it is important to know how to relate

point clouds to one another and find the relationship so we can transform the given point.

Finally, and with the most difficulty, we need to find this relationship for an imperfect and

differing set of points. We do this through either the Kabsch Algorithm of the Iterative Closest

Point Algorithm.

Background Note: In order to properly understand this paper, the reader is expected to have a working

knowledge of trigonometry, vector geometry, and linear algebra. While not necessary, a basic

understanding of integral calculus would be helpful. No prior information on this specific topic is needed.

Introduction

This paper works to provide a solution for the problem of finding the location of a point

in a ℝ3coordinate system relative to a different, imperfect ℝ3coordinate system. This solution

involves defining terms for this solution, providing an understanding of point to point cloud

relationships, exploring correlating point clouds, and finally finding a solution that will work

with imperfect point groups.

Background

Many real-world situations deal with 3 dimensioned points in space. The inspiration for

this research comes from the struggle to find point measurements relative to machinery using a

Laser Tracker (a high-precision industrial measurement tool). This is difficult because the tool is

only capable of measuring points relative to itself (it serves as the origin of the measurement

and determines point location by spherical angles and a distance). In order to find these points

relative to the machine, the “tracker’s” relative location to the machine must be determined.

This math also is very useful in computer graphics. It can be used in photo editing software to

match contours of graphics to one another, scale graphics, or transform the graphics on the

screen.

In order to understand these point transformations, it is important to establish how to

define these points mathematically. For the purpose of this research we can assume that these

points are being defined in ℝ3 (3 dimensional space). Basic math provides 3 common (fairly

similar) ways to define points in ℝ3:

• Numeric Coordinates: (x,y,z) or (r,θ,z) or (r.θ.ф)

• Matrices: �� � 	
 or ���	�

• Vector-Distances: <x,y,z> or {�̂ + ��̂ + 	��}.

Each of these different systems comes with its own set of math rules and provides a different

medium to consider the problems at hand. The simplicity of the numeric system is usually what

is defaulted to for simple transformations; however, as will be demonstrated in the following

content, much of this math can be conducted more readily with matrices and vectors.

Section 1: Data Points to Point Clouds

It is important to determine an independent point’s relationship to the others. When

given a point in ℝ3, the assumption is often made that the point is in regard to a given

coordinate system with a known origin. However, if the coordinate system is not known, we

must simply consider the point’s relationship to all other known points. While occasionally the

independent point will fit nicely into the geometry of the other points, often it would provide

geometry too difficult to work with to be worthwhile considering. This leaves only the option of

considering the relative distances between the independent point and all other points.

This can be done numerically. However, this is very difficult to do because there is no

condensed way to describe these different relationships, so what is left is as many separate

coordinate distances as there are points. It is also possible to consider the distance to the

centroid of the point group, but that is a single distance relationship with no affiliated direction,

and so could be anywhere on the surface of a sphere of possible locations around the

independent point.

With vectors, the relationship is found similarly to with points; however, the

relationship to the centroid is far more precise because, in addition to distance, we can now

show direction from the point. The total relationship can also be expressed with a resultant

vector-distance combining all the provided vectors. Assuming a shared coordinate system, this

is the best way to represent the relationship between an independent point and a point cloud,

because it is a very simple, precise, and visual relationship.

Matrices provide the most options of any of the systems. The distance relationships

can be expressed as a set of vector distances represented by vertical column matrices. This in

turn can be rewritten as a single matrix representing the set. The point cloud coordinates can

be used to generate a basis that spans ℝ3, map the independent point onto the new basis and

have a precise relationship regardless of true origin.

We must also consider the number of points. Any of these methods should work

regardless of the number of points given in the point cloud; however, if fewer than three points

are used, the centroid of the cloud will provide a relationship to the independent point that

resembles a ring normal to the distance between the points. This is because the independent

point would have the same distances to the points no matter where on the ring it lays. With

this in mind, it is safe to assume that using fewer than 3 points in a point cloud will lead to an

imprecise relationship. With many points, the vector representation becomes far more difficult

to find (the centroid relies upon a greater number of data points), and the numeric

representation becomes almost impossible to find or demonstrate by hand. The matrix

representation however, should remain almost identical since no matter the size of the point

cloud, the basis should remain consistent, and the mapping will be equally easy.

Section 2: Correlating Point Clouds

It is also important to find point cloud’s relationships to one another. A similar problem to

what is presented in the first part of the research, relationships between point clouds can be

thought of in two ways:

• The sum of the relationships between all correlating points

• The relationship of the point clouds as a mathematical entity.

Correlating point clouds simply implies that the geometry of the point cloud is sustained

while the positions differ. This can mean that every point in a cloud correlates with a point in

the other, or that there are sufficient correlating points between the clouds that geometry can

be inferred, and the points that don’t correlate are not defined in the opposing point cloud.

It is often helpful to consider real world situations to remove some of the abstraction

from the concept. Consider a car. While standing behind the car, one can see the back edge of

the roof, the left and right rear tires, the exhaust, the rear bumper and the license plate.

Standing to the left of the car however, one can see the front and rear left tires, the back and

front edges of the roof, the doors, and the front and rear bumper. In this situation, these points

are in totally different relative spaces from one another, but the rear tire, bumper, and roof

correlate between the point groups. Understanding the relationship between the correlating

point groups means that one can infer the location of ANY of the points (even the non-

correlating points) from either perspective, or another perspective entirely.

The best way to find this kind of relationship is by considering a transformation of the

point group (this can be a translation or a rotation). When the point cloud is moved along this

transformation, the correlating points should match each other. That transformation can then

be used to describe the relationship between the groups more precisely than a distance can.

Additionally, a transformation can be checked by shifting an unused correlating point and

checking the distance between its related point in the new point group.

Numerically, this is once again a difficult concept since distance and direction cannot

be described simultaneously. The way to find the relationship is either a highly abstract set of

distances between correlating points, which doesn’t allow much way to find an inferred point

relative to a different point cloud. The other option is once again relating the centroids of ONLY

the correlating points. However, similarly to relating a single point, this is a very abstract

distance and cannot provide a direction, leaving an unacceptably flawed solution. This all but

eliminates a numeric solution as a possibility.

Vector distance relationships are much closer, but still share some problems. When

comparing centroids by vectors, a very accurate translational relation between the point groups

can be generated; however it does not account for the rotational relation of the points (the

centroids could line up, but the system needs to be rotated to match up). Likewise if individual

correlating point relationships are found, every sequential transformation will undo whatever

the last transformation accomplished, simply offering a series of transformations that do not

relate to one another. The one other option for vectors alone is to consider the average

transformation of all the distance vectors created between correlating points; this however,

shares the same fatal flaw as the centroid transformation.

Finally, Linear Algebra has a well-established and studied method of handling these

relationships known as a “Transformation Matrix.” This is a concept and can be represented in

several different ways, but the execution remains the same. When a vector representation of a

point in subspace A is plugged into a transformation-matrix function from subspace A to

subspace B, the output represents the position vector of that point in subspace B (the subspace

from the second point cloud). This method allows for both translational and rotational

relationships to be accounted for simultaneously. Finding the transformation matrix consists of

finding the translational relationship and the rotational relationship between the different

vector spaces and then plugging those into a set format of matrix.

Three major types of transformation matrices exist in standard schools of thought, these

are (‘A’ being the vector transformed):

• Affine: � ���� ��� ������ ��� ������0 ���0 ���0 ������� , {A = !��	1#} {t stands for translation, r for rotation,

and s for scale}

• Linear: � ���	�, {A = ���	�}

• Perspective: $1 0 00 1 000 00 11 0000%, {A = !��	1#}

• Rigid (Euclidean): � &��� ��� ������ ��� ������ ��� ���' + ���	�, {A = ���	�}

Among these, only the Rigid Transform and the Affine Transform fit the situation. The linear

transform only translates points, while the perspective transform only changes the scale of

points. The rigid transform and the affine transformation can clearly be used interchangeably,

so for the remainder of the paper, I will simply refer to “transformation matrix” when

discussing either.

To utilize this relationship, we need to find the transformation matrix. The best method

of doing this with directly relative points is to use diagonalization to find the eigenvalues and

eigenvectors representing these point groups, and map between the eigenbases. While a very

simple process in execution, this is a very abstract concept visually, and can be difficult to

describe or picture.

Section 3: Imperfect Pairings

 The next step is to figure out these relationships with imperfect groups. Up to this

point, what has been discussed is ideal world situation. When all the “correlating” points have

an exact match in the other point group. The challenge is when the points are not quite perfect.

When the relationship between correlating points is not identical for each pair. This can

commonly happen when relating real-world to conceptual world, and almost universally when

comparing two sets of human-taken measurements.

 Finding a transformation matrix gets much more difficult. The eigenvalue approach to

finding a transformation matrix no longer works because with imperfect points the math will

end up with a matrix that is not diagonalizable. Additionally, the mathematician must find some

way to reduce these errors between points so the transformation leads to the smallest possible

cumulative error. This added difficulty takes the problem from being a three step discovery to a

many step difficult math problem.

 Mathematicians today execute this process primarily with two algorithms, both are

fairly recent discoveries. They are the:

• Iterative Closest Point (ICP) Algorithm

• Kabsch Algorithm.

Each algorithm is a series of steps that allow for finding the optimal transformation matrix, and

both utilize a “reference cloud” where the focus is translating one point cloud to another fixed

“reference” (assuming the reference to be the “perfect” cloud).

 The ICP Algorithm takes a point by point approach to finding the transformation

matrix, stepping through the following:

1. Find the closest point in final cloud to each point in the initial cloud

2. Find root mean squared error of the entire system

3. Estimate rotation and translation to decrease RMSE found above

4. Transform entire initial cloud by rotation and translation

5. Iterate steps 1-4 until RMSE cannot decrease

6. Combine all transformations from iteration to find net transformation

This is a long, brute-force process and can almost exclusively be done by computer processing

hardware since there will often be hundreds of iterations before an optimal transformation is

found. However, it can be done with any sets of points with any size error, and can leave the

type of transformation matrix up to the user making it a useful tool.

 The Kabsch Algorithm is a far more elegant solution to the problem. It follows the

following steps once through and is complete:

1. Find the centroids of the point clouds

2. Find rotation

a. Find the “Covariance Matrix”

i. Translate both point groups to the origin by using their centroid

ii. Multiply the initial set of points by the transpose of the final set

b. Use “Singular Value Decomposition” to decompose the Covariance Matrix

i. H (Covariance) = USVT

c. Multiply the transpose of U by V in order to get a 3x3 rotation matrix

i. R = UTV

3. Find translation = t

a. Multiply the new rotation matrix by the centroid of the initial point group and

then add the centroid of the final to find the difference between the two after

rotation.

4. AR+t = New Rigid Transform

This algorithm is very simple and straightforward, and works for all sizes of point groups. Due to

the long nature of Singular Value Decomposition, it also is better done with computer code,

however all the other steps can easily be done by hand. It also factors in the error reduction

with the Singular Value Decomposition, so when you check the RMSE of the newly translated

points, you should end up almost universally with as small of a value as the provided point

groups will allow.

Conclusion

This is a very difficult math problem that can boil down to a very simple, elegant

solution, or a far less elegant, but practical solution. From our understanding of point

representation, points’ relationships to clouds, and clouds’ relationships to one another, we are

able to extract a concise algorithm that is applicable not only to perfect pairings but also, with

consideration, imperfect clouds. The simplicity of the ending solutions means that anyone with

a basic knowledge of Linear Algebra and Calculus can do the math, and anyone with some

programming knowledge can find a way to implement it.

